Key components, cell voltage, and cell capacity of Li-ion battery (a), Ni-MH battery (b), and the proposed Ni-Li battery (c). Credit: ACS, Li et al. Click to enlarge.
Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a prototype of a battery that can simultaneously offer the high cell voltage of Li-ion cells and the large cell capacity of Ni-MH cells: a rechargeable nickel (cathode) / lithium metal (anode) battery using a hybrid aqueous and organic electrolyte separated by a superionic conductor glass ceramic
The proposed Ni-Li battery offers both a high cell voltage (3.49 V) and a large cell capacity (268 mAh/kg), which together create an ultrahigh energy density. The theoretical energy density calculated using only the active electrodes and cell voltage for the Ni-Li battery is 935 Wh/kg. With the same calculations, NiMh offers 214 Wh/kg, and cobalt oxide Li-ion cells offer 414 Wh/kg. A paper on the proposed Ni-Li system was published 5 October in the Journal of the American Chemical Society.
“The amount of electrical energy E (Wh/kg) that a battery is able to deliver is a function of the cell voltage U (V) and capacity Q (Ah/kg), both of which are linked directly to the chemistry of the system.”
—Li et al.
Current prominent battery systems such as Li-ion and NiMH demonstrate “huge gaps” between expected and practical performances, the researchers note. Li-ion cells are hobbled by the limited inherent capacity of their cathode materials; by their low power densities which are restricted by the slow electrode kinetics relating to Li intercalation/deintercalation from the host materials; and safety issues.
As for NiMH, although both the cathode and anode material can deliver a large capacity, the cell voltage is only 1.32 V due to the limitation of aqueous electrolyte.
One radical exploration is to break the routine of classical batteries which involves a single electrolyte. If an aqueous electrolyte and organic electrolyte can be smartly integrated in one battery, it would enable state-of-the-art combination choices for the existing battery chemistry. Recently, a superionic conductor glass ceramic film (LISICON) with stability in aqueous solution and its application in a Li-air battery has been reported. [Earlier post.]
Here, we proposed integrating a nickel hydroxide electrode working in an aqueous solution as the cathode and a Li metal working in an organic electrolyte as the anode by a LISICON film to fabricate a rechargeable Ni-Li battery.
Li is the most negative metal while at the same time possessing an ultrahigh capacity of 3, 860 mAh/g, thus facilitating the design for high energy density. However, the uneven plating of Li in the form of dendrites during discharge-recharge cycles may puncture the polyolefin thin separator, leading to short circuit hazards. In the Ni-Li battery, the rigid ceramic LISICON film is hardly punctured by Li dendrites thus enabling the utilization of Li metal.
As for a cathode electrode, nickel hydroxide, with a less positive potential and an aqueous solution as the electrolyte, is inherently safer than the case of the cathode in the Li-ion battery.
—Li et al.
Work on the Ni-Li battery is in very early stages, the researchers said. Although the power ability of the Ni-Li battery is expected to be superior to that of the Li-ion battery regarding the electrode kinetics, the current data “are not satisfying” due to the low conductivity of the LISICON film.
Although assembly of such a battery seems “somewhat complicated”, they wrote, the implementation of a hybrid electrolyte can provide a variety of choices for electrode materials.
In summary, we propose a rechargeable battery system by integrating two reversible electrode processes associated with an aqueous and a nonaqueous electrolyte, respectively. The prototype Ni-Li battery promised an ultrahigh theoretical energy density as well as a high power potential, which reinforced the view that it is an important avenue to fulfill the best-performing combination for an electrode/electrolyte/electrode system.
Notre objectif est de mettre en partage sur nos trois spécialisations (stratégies et management de l'innovation business tous secteurs, stratégies de croissance ENERGIE et CLEANTECH, stratégies de croissance DIGITAL), les analyses d'Innhotep, celles de nos invités et des articles tiers issus de notre veille. Accélérateur d' "innovations business", Innhotep intervient comme conseil auprès de grands groupes et accompagne le développement de start-up high-tech.
- Innovations business (327)
- Innovations énergétiques (764)
- Innovations numériques (1334)
jeudi 15 octobre 2009
High performance battery (Researchers at Japan’s AIST)
Libellés :
Innovations énergétiques
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire